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N = an. = const.

Statistique de Boltzmann (1)

- UEZnLnE[:const.

Toutes les particules sont distinctes mais identiques.
Les niveaux d’énergie sont identiques.

Toutes les configurations ont la méme probabilité, mais elles doivent
maintenir constants le nombre d’atomes et I'énergie totale.

Considérons N molécules identiques mais distinctes (on peut les discerner

individuellement). Chague molécule peut prendre p niveaux d’énergie, aussi identiques
mais distincts (le niveau i d’'une molécule ne peut étre occupé que par I'électron de cette

méme molécule, autrement dit: les billes sur la figure ne se déplacent que

verticalement).

Le nombre N de molécules, mais aussi I'’énergie totale U du systeme est conservée.
Chaque configuration a la méme probabilité d’'occurrence. Nous voulons déterminer le

nombre n; de particules le plus probable sur I'état E..

Exemple:

Calcul de la répartition des électrons sur les niveaux énergétiques d’un gaz de molécules

identiques.
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Statistique de Boltzmann (2)

Ey E, E . E
o o O O O

©

Y Conditions
N! N= an. = const.

Permutations de N billes
UEZn[~E[ = const.

Permutations indistinguables dans chaque état

n,! !
0 n 1,

\ J J
Y — L L
n,! n!

Nombre W de configurations possibles avec N particules dans les états (ng, n, ... n;, ... np)

W(no,nl,...,ni,...,np) =

Chaque molécule doit étre classée dans un des niveaux E.. Il faut donc calculer les
permutations de n billes distinctes (ici de couleur différentes). 2 N! possibilités.

Mais dans chaque état E, I'ordre des billes n’importe pas. > il faut diviser par les
permutations des billes dans chaque niveau = n,! Possibilités.

Au final:
N!
W(no,nl,...,ni,...,np)z >
[ !
i=0
Rem:

Dans un niveau E, chaque molécule a une seule place possible. La dégénérescence (que
nous introduirons au slide suivant est g.=1).
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Statistique de Boltzmann (1 bis)

Energie

A
3 + N
E; ‘\lzL n; — Us= Zn[ -E, = const.

N = Zrli = const.
i

Les billes sont distinctes («colorées»), mais
les niveaux sont partagés et irréguliers. lls peuvent contenir plusieurs billes.

Toutes les configurations ont la méme probabilité, mais elles doivent
maintenir constants le nombre d’atomes et I'énergie totale.

Considérons maintenant une situation différente: N particules identiques mais distinctes
avec des états partagés. De maniere générale, le niveau d’énergie E; peut correspondre a
plusieurs états (on dit que le niveau est dégénéré). Dans une méme niveau E, un état
peut étre occupé par n’importe quelle particule. De méme un état peut contenir
plusieurs particules.

Le nombre N de molécules, mais aussi I'énergie totale U du systeme est conservée.
Chaque configuration a la méme probabilité d’occurrence. Nous voulons déterminer le
nombre n; de particules le plus probable sur I'état E;.

Exemple:
Calcul de la distribution de la distribution de I’énergie cinétique dans un gaz. Dans ce cas

la dégénérescence est donnée par la densité p, d’états avec la méme énergie.
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Statistique de Boltzmann (2bis)

E, E, E, Ep
-O0—O- | — o |— —O—
O —_— — | Conditions
. N=) n =const.
Dégénérescence g & g g z :
P

UEZn[~E[ = const.
Y i
Nl-gt gl gl g

\ : J | , J -\ J J | J | J
n,! n!

!
n,! n!

):

Nombre W de configurations possibles avec N particules dans les états (ny, ny, ... n,, ... n)

N!‘]ﬂ[g,-""
— i=0

W(ny,ny,....n,,...,n )= -
]
I In,..

i=0

P

Nous pouvons refaire le méme calcul que dans le cas précédent.
Chaque molécule doit étre classée dans un des niveaux E,. Il faut donc calculer les
permutations de n billes distinctes (ici de couleur différentes). 2 N! possibilités.

Mais dans chaque état E, I'ordre des billes n’importe pas. = il faut diviser par les
permutations des billes dans chaque niveau = n,! Possibilités.

Dans chaque état E;, chaque particule possede g, possibilités d’état = introduction d’un

facteur g
Au final: e
N!'Hgi’
Wty 1yyst)) = p‘:o
[T
Rem: =0

Si nous considérons g=1, nous obtenons la formule du cas précédent. On peut donc
calculer les deux cas ensemble.
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Statistique de Boltzmann (exemple avec g=1)
N=6 U=10E
n; n; n;
6E 0 0 0 6E
SE Q 1 0 o JE
4E 0 0 o 4E
3E 0 1 o 3E
E 0 O O , 90 O O 2
1E Q0 QO O 5 @ 0O O 3 (@) 2 1E
6 permutations 60 permutations 15 permutations
THERMODYNAMIQUE, cours EPFL, Prof. TRAN Minh Tém Conditions
. N = Zn[ = const.
L d N Ler i
es permutations sont données par: i
P P W (9o o) _p—o' U=)n-E, =const.
n.! i
i=0 '
Déterminer n, = Maximiser W par les multiplicateurs de Lagrange = Boltzmann

Dans cet exemple g;=1. Les niveaux sont équidistants. Il y a 6 billes et I'énergie totale est

de 10 E.

L'occurrence de la distribution (3,2,1,0,0,0) est nettement plus grande que les autres cas.
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Statistique de Boltzmann (3)

4
N Hg!n P P
W=—" e = Ln(W)=Ln(N)+ ) nLn(g)- Ln(n)
H”i ' i=0 i=0
i=0

Formule de Stirling Ln(A)=A-Ln(4A)-A4

r r r
Ln(W) = N-Ln(N)+Zni -Ln(gl.)—Zni -Ln(n,.)—N+Zn,.
i=0 i=0 i=0

- -

Const. Const. Const.

P P P
OLn(W) = Zan,. Ln(g,)— Z{ani -Ln(n)+n, lanl. } + ZHI. l@nl.
n

i=0 i=0 -0 N

i

i

Y2 g
OLn(W) = Z Ln [—’j -0n,
i=0 n

Pour déterminer la répartition la plus probable, nous considérons un grand nombre de
billes. Nous déterminons Ln(W) et I'approximons en utilisant la formule de Stirling pour

A trés grand.

Nous voulons maximiser Ln(W), donc il faut calculer les variations de Ln(W) lorsque les n,
varient.
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Statistique de Boltzmann (4)

P P 4
N=)n=const. = 0N=0=) on, U:Zp:E,»n,.:const. = 8U=0=2El.-6nl.

=0 =0 =0 i=0

Multiplicateurs de Lagrange: OLn(W)—a-0N—B-0U =0

P
|:Ln [&] —-a-pE, } -on, =0 pour tout On,
Py n

i i

{2) v, = B
n.

i i

= B i
- BE, P
e 8i —BE;
IZO: & ! Z g€
i=0
—
Const.

Nous introduisons les multiplicateurs de Lagrange pour introduire les deux conditions N=
const et U= const.

L'équation résultante doit étre valide pour touts les dn, = les termes entre parenthése
doivent donc étre tous nuls.

N étant la somme de tous les n,, il est possible d'éliminer la constante a.
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Statistique de Boltzmann (5)

p

ZﬁEi "8 'eiﬂE'

p p
_ _ 8N o _ 1 &
U—ZE,.-n,.—ZEi- S e _E.op—.N
T T St
i=0 i=0
Théorie des gaz: U= N%kT g ~E

3 1
= = e g—
2 P kT

z 15 "
Z(ﬁE,) e /" _l..[o xme_xdx_l.r(s/Q’)_

1 1
B Zp:(ﬂE[)o.s_e’ﬁE,_ﬂ .[:xl/Ze—xdx p TGB/2) p

n. N B 1
‘ Lo e Boltzmann
Tl Eu

Pour déterminer la constante [3, il faut analyser I'énergie totale U=const. Elle peut
s’exprimer en fonction de f3.

- Pour ungaz, U=N. 3/2. kT

- Dans ce cas, la dégénérescence correspond a la densité d’état dans un volume
cubique donc g; est proportionnelle a la racine carrée de E..

- Les intégrales correspondent a des fonctions I'(5/2) et I'(3/2).
(voir Abramowitz, «handbook of mathematical functions», p. 255 et 256)

- On peut utiliser la formule: I'(z+1)=z.I'(z)
(voir Abramowitz, «handbook of mathematical functions», p. 257)

- B=1/KT.
De plus, on peut définir une énergie p, telle que la constante est exprimée par e/,

Au final on obtient la distribution de Boltzmann. Elle est correcte pour les deux cas
décrits précédemment.
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Théorie des gaz

Une seule particule de gaz:

Variation d’impulsion sur une surface Ap =2-mv,

Fo Ap. 2-mv?

T

c c

Ensemble de particules de gaz:

Pression P= ﬁ.[c 'szz'”‘Ekm avec Ekm:lmv2
6 3 2
, 2 3 3 3
Energie P'VZE'N'Ekin :UEN.Ekin:EP.V:E.nmalRT:E.N'kT

2 1
P-V:E-N-Ekm =N-kT =E, =Emv2 =%-kT

Force d’une particule: | = ~ avec distance inter-collision [ =v -7,

Statistiques des particules
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Dégénérescence en 3D:

Nombre de particules:

T N

Exemple: Distribution de Maxwell

g, = p(E)-dE =JE -dE

E
n,=n(E)-dE=A-~JE-e ¥ -dE

2N

- d =
N I”(E) E = 4 (kT)3/2-1“(3/2) \/;-(kT)m

=

E

_nEME___NE o (b

P(E)dE==— NP

E:lm|v|2
2

dE:m|v|-d|v|

n(|v|)-d|v| _ 2m*?

2
_ ”’M 1107

|v|2-e W~d|v| !

P(y)-ap ="

\/;(kT)m : ’

m=30m,

A T=300 K

Comme exemple, considérons le cas de molécules distinctes mais identiques dans une
boite. La dégénérescence correspond a la densité d’états dans cette boite et elle est
donnée par la racine carrés de I'énergie. La constante A peut étre obtenue en calculant

le nombre total de molécules.

Cela permet de déterminer la distribution de I'’énergie cinétique %.mv2. On peut
transformer cette distribution en la distribution de la norme de la vitesse des molécules

Cette fonction est connue sous le nom de distribution de Maxwell.
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Statistique de Bose-Einstein (1)

Energie
A
Ep X O X n, —
X X X
E O— X n; . U=).n-E, =const.
X X X - "
1 X _O_O- X nl
o =O=—X X X X—O-n, —
| J
f
N = an. = const.

Toutes les configurations ont la méme probabilité, mais elles doivent
maintenir constants le nombre d’atomes et I'énergie totale.

Les billes sont indistinctes («noires»)

Dans la statistique de Bose-Einstein les particules sont indistinguables.
Chaque niveau d’énergie est composé de plusieurs états de méme énergie. Il y a g-1
séparation entre ces états d’'une méme énergie.
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Statistique de Bose-Einstein (2)

Etats d’énergie E;

-O—X—X-OO X—O— X——

LO L X1 . X199, X0, X,

n billes et g-1séparations —> répartir n, billes dans n,+g-1 places

VVI- — (n[+g[_1)!
n! (g -1)!

Configuration totale

Nombre W de configurations possibles avec N particules dans les états (ny, n,, ... n,, ... n)

Conditions
N= Zni = const.

U= an. -E, = const.

Considérons un des niveaux d’énergie.

Il peut se modéliser par n,+(g;-1) places dans lesquelles nous devons répartir n;
particules. L'occurrence est donc donnée par la «combinaison» de n; particules dans
n+g-1 places.
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Statistique de Bose-Einstein (3)

2 (”1 +g; —1)!

W=
o 1! (gi—l)!

= Lan(W)= Zp:Ln[(ni +g; —1)!] —Ln(n, !)—iLn[(gi —1)!]

Formule de Stirling Ln(A)=A-Ln(A)-A4

Ln(P) =Y (n,+g,~1)- Ln(n, +g,~1)~ > n - Ln(n) ~ (g, ~1)- Ln(g, ~1)
i=0 i=0

Const

P )
OLn(W)=>"0n, -Ln(n,+g,~1)=> on, - Ln(n,)
i=0 i=0

2 g -1
oLn(W) = ZLn 1+2— |- 0On,
ni

i=0

On peut de nouveau utiliser les multiplicateurs de Lagrange pour résoudre ce probleme
et déterminer la distribution la plus probable.
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Statistique de Bose-Einstein (4)

Nzﬁni =const. = 8N=0=Zp:6ni
i=0

i=0 i=0

Multiplicateurs de Lagrange: OLn(W)—a-0N—B-0U =0

Z g -1
z Ln|1+2— |-a—-BE, |-0n, =0 pour tout On,
n,

i=0 i

Ln(1+g"—_1]:a+ﬂE[ = EEL:%
; g g&-1 -l
as—kﬁT I’Zi 1
. —> 2 E—u

_kT l e kT _1

U:Zp:E,»n,. =const. = 8U=O=2p:El.-6nl.

i=0

Bose-Einstein

On obtient la statistique de Bose-Einstein.
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Statistique de Fermi-Dirac (1)

Energie
A
E, — - —— o, _
E, —00— — n, - UzZn[~E[=const.
1 —-O— — —0O— Ny
o —O— —O—n, —

f
N = an. = const.

Toutes les configurations ont la méme probabilité, mais elles doivent
maintenir constants le nombre d’atomes et I'énergie totale.

Les billes sont indistinctes («noires») et principe d’exclusion

Le cas de particules indistinguables mais avec le principe d’exclusion est décrit ici.
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Statistique de Fermi-Dirac (2)

Etats d’énergie E;

—O— —— —O— —O— —

n billes et n,<g -> répartirn, billes dans g, places

g!
Wo=__ 8"
Yon)(g -n)!

Configuration totale

Nombre W de configurations possibles avec N particules dans les états (ny, n,, ... n,, ... n)

Conditions
)4 )4 g
W(no,nl,...,n[,...,np)=HVK:Hg—‘ NEZnizconst.
i i=0 1 i) i

U= an. -E, = const.

Il n’y a qu’une seule particule par état. Pour chaque état, il faut donc répartir n, billes
dans g; places.

Statistiques des particules



Statistique de Fermi-Dirac (3)

B P gi! _ p P P
W—l_olm = Ln(W)—;Ln(gi!)—;Ln(ni!)—;Ln[(gi—n,.)!]

Formule de Stirling Ln(A)=A-Ln(A)-A4

Ln(¥) =Yg, Ln(g) = n,-Ln(n)~ 3 (g, ~n)-Ln(g,~n)
\_Y_J

Const

) P
OLn(W)==) on,-Ln(n)+Y_on,-Ln(g,—n,)
i=0 i=0

V4 g
OLn(W)=> Ln [—’—lj'énl.
ni

i=0

De nouveau on applique les multiplicateurs de Lagrange.
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Statistique de Fermi-Dirac (4)

P
|:Ln [&— ]—a—ﬂEi]ﬁni =0 pour tout On,
i=0 n,‘

Ln(&—ljza+ﬂE[ = ﬂ:%
g €

i i +1
a=-* n.
kT R
ot —> 2 E—p
kT e +1

P P p p
N:Zni:const. = GN:O:ZGni U:ZE,»n,.:const. - aU:OZZEi‘a”i

=0 =0 i=0 i=0
Multiplicateurs de Lagrange: OLn(W)—a-0N—B-0U =0

Et la solution correspond a la statistique de Fermi-Dirac.
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Statistique de Fermi-Dirac avec dégénérescence (2bis)

Etats d’énergie E;
i G, possibilités dans chaque état

OO — —O— —O— —

n billes et n,<g -> répartirn, billes dans g, places

Configuration totale

Nombre W de configurations possibles avec N particules dans les états (ny, n,, ... n,, ... n)
Conditions
. . 8! G N=> t
W(ny,n,...n,...n)=||W =] | ———— G’ = ) n, =const.
(15, m, ) 1_0[ gni!(gi—ni)! ‘_

U= an. -E, = const.

Il n’y a qu’une seule particule par état. Pour chaque état, il faut donc répartir n, billes

dans g; places.
Mais chaque état offre G; positions possibles pour la bille qu’il accueille.
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Statistique de Fermi-Dirac avec dégénérescence (3bis)

W= ﬁ G = Ln(W)= ZLn(g - ZLn(n n-— ZLn[(g —n)']+2nln(G)

n,.! V—n)
Formule de Stirling Ln(A)=A-Ln(A)-A4

Ln(W)= igi -Ln(gi)—zp:n,. -Ln(nl.)—zp:(gi —-n,)-Ln(g, —ni)+Zp:niLn(Gi)
k_Y_J

Const

) p )
OLn(W)==Y on,-Ln(n)+Y_0on,-Ln(g,—n)+ Y. on,-Ln(G,)
i=0 i=0 i=0

L) = Ln ({& - 1] : G,,] -om,
i=0 I’li

De nouveau on applique les multiplicateurs de Lagrange.
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Statistique de Fermi-Dirac avec dégénérescence (4bis)

D P 4
N=)n=const. = ON=0=) on, U:Zp:E,nn,.:const. = 8U=0=2El.-6nl.

=0 =0 i=0 i=0
Multiplicateurs de Lagrange: OLn(W)—a-0N—B-0U =0

P
Z{Ln((&—l}q.]—a—ﬂEi:l-an[=0 pour tout On,
n

i=0 ;i

a=—tl n, 1
kT — = I
1 ) g (1 B
= e +1

Et la solution correspond a la statistique de Fermi-Dirac avec dégénérescence.

Par exemple dans le silicium, avec les donneurs: G=2 car ils peuvent étre occupés par
deux spins différents, mais avec qu’une seule place !

Toujours dans le silicium, pour les accepteurs: G=4 car ils peuvent étre occupés par deux

spins différents sur deux orbitales différentes mais de méme énergie. Par contre ils n‘ont
qu’une place a disposition.
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http://www.sciences.ch/htmlfr/mecanique/mecanstatistique01.php#dists
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MB BE
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s = (.l!‘.‘fl. -1
"
1=
FD
@ ikt Su il Wittt “1
~ |
e eotde 41 N -
O 1 1 71
-4 -2 0 2
a+fe,

Voici une comparaison des trois fonctions statistiques.
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Exemple avec: N=3, p=1, n;=2, n;=1, g;=3 et g,=1

A) Boltzmann
' 1
El ©- - 0- 0~ 0- 0- 0 0 0 | O 0 0 O 0 O O O 00 0 0 0 00000
! 1
—E—oi—of—i—:oof—:-o—i-o— I —lol—ol—!—!o0i—!-0-lo
) | ' il I i | ' ' | ] H I i

LSS R e
| —1—0!—0!—!—1001—I-0-10—
A R T A

o-io-i—iooi—i—i-0l-0i— ! o-lo-i—looi—i—i—ol—oi— |
; ;

1 1 i T T T
1 2 3.4 5 6.7 8 9 110 11 12 13 14 15 16 17 18'19 20 21 22 23 24.25 26 27

2
N[er
W=—it =27
p
Hn,.!
B) Bose-Einstein =
E1 -0 -0- -0 -0 -0- O El o -0 o

Considérons un exemple qui permet de comparer les 3 statistiques: Boltzmann, Bose-
Einstein et Fermi-Dirac. Il n’y a que 2 niveaux d’énergie possibles (p=1), avec 3 particules.
Le niveau de base contient 3 états de méme énergie (g,=3) alors que le niveau excité (E,)
ne contient lui qu’un seul état (g,=1). Nous considérons le nombre de possibilité
d’obtenir la distribution (ny,n;)=(2,1).

Boltzmann: il y a 3x9=27 possibilités avec des billes de couleur différentes. Les solutions
1 a 9 correspondent a la boule verte sur I'état excité et aux possibilités de varier les
positions des boules rouge et bleue sur les niveaux de base. On remplace ensuite la
boule verte par la boule rouge puis la boule bleue pour obtenir les solutions 10 a 27.
Bose-Einstein: Les boules sont indistinctes («grises»). Les solutions 10 a 27 (boules
rouge ou bleue sur I'état excité) se confondent avec les solutions 1 a 9 (boule verte sur
I’état excité). De plus, les solutions 7,8 et 9 sont identiques maintenant aux solutions 1,2
et 3. =2 il ne reste que 6 possibilités différentes.

Fermi-Dirac: Les boules sont indistinctes, et en plus il ne faut mettre qu’au plus une
boule par état (principe d’exclusion de Fermi). Les solutions 4, 5 et 6 disparaissent et il
ne reste que 3 possibilités.
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