
Statistique de Boltzmann (1) 
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Toutes les configurations ont la même probabilité, mais elles doivent 
maintenir constants le nombre d’atomes et l’énergie totale.
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Toutes les particules sont distinctes mais identiques.
Les niveaux d’énergie sont identiques.

Considérons N molécules identiques mais distinctes (on peut les discerner 
individuellement). Chaque molécule peut prendre p niveaux d’énergie, aussi identiques 
mais distincts (le niveau i d’une molécule ne peut être occupé que par l’électron de cette 
même molécule, autrement dit: les billes sur la figure ne se déplacent que 
verticalement). 
Le nombre N de molécules, mais aussi l’énergie totale U du système est conservée. 
Chaque configuration a la même probabilité d’occurrence. Nous voulons déterminer le 
nombre ni de particules le plus probable sur l’état Ei. 

Exemple: 
Calcul de la répartition des électrons sur les niveaux énergétiques d’un gaz de molécules 
identiques. 
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Statistique de Boltzmann (2)
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Permutations de N billes 

Permutations indistinguables dans chaque état
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Conditions

Chaque molécule doit être classée dans un des niveaux Ei. Il faut donc calculer les 
permutations de n billes distinctes (ici de couleur différentes).  N! possibilités.

Mais dans chaque état Ei, l’ordre des billes n’importe pas.  il faut diviser par les 
permutations des billes dans chaque niveau  ni! Possibilités.

Au final:

Rem:
Dans un niveau Ei, chaque molécule a une seule place possible. La dégénérescence (que 
nous introduirons au slide suivant est gi=1). 
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Statistique de Boltzmann (1 bis)
Energie
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Toutes les configurations ont la même probabilité, mais elles doivent 
maintenir constants le nombre d’atomes et l’énergie totale.

Les billes sont distinctes («colorées»), mais 
les niveaux sont partagés et irréguliers. Ils peuvent contenir plusieurs billes.

…

Ep

…

Considérons maintenant une situation différente: N particules identiques mais distinctes
avec des états partagés. De manière générale, le niveau d’énergie Ei peut correspondre à
plusieurs états (on dit que le niveau est dégénéré). Dans une même niveau Ei, un état
peut être occupé par n’importe quelle particule. De même un état peut contenir
plusieurs particules.

Le nombre N de molécules, mais aussi l’énergie totale U du système est conservée.
Chaque configuration a la même probabilité d’occurrence. Nous voulons déterminer le
nombre ni de particules le plus probable sur l’état Ei.

Exemple: 
Calcul de la distribution de la distribution de l’énergie cinétique dans un gaz. Dans ce cas 
la dégénérescence est donnée par la densité i d’états avec la même énergie. 
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Statistique de Boltzmann (2bis)
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Conditions

Dégénérescence g0 g1 … …gi gp

Nous pouvons refaire le même calcul que dans le cas précédent. 
Chaque molécule doit être classée dans un des niveaux Ei. Il faut donc calculer les 
permutations de n billes distinctes (ici de couleur différentes).  N! possibilités.

Mais dans chaque état Ei, l’ordre des billes n’importe pas.  il faut diviser par les 
permutations des billes dans chaque niveau  ni! Possibilités.

Dans chaque état Ei, chaque particule possède gi possibilités d’état  introduction d’un 
facteur gi

ni

Au final:

Rem:
Si nous considérons gi=1, nous obtenons la formule du cas précédent. On peut donc 
calculer les deux cas ensemble. 
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Statistique de Boltzmann (exemple avec gi=1)

Les permutations sont données par:  

Déterminer niMaximiser W par les multiplicateurs de Lagrange  Boltzmann
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Dans cet exemple gi=1. Les niveaux sont équidistants. Il y a 6 billes et l’énergie totale est 
de 10 E. 

L’occurrence de la distribution (3,2,1,0,0,0) est nettement plus grande que les autres cas. 
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Statistique de Boltzmann (3)

Formule de Stirling
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Pour déterminer la répartition la plus probable, nous considérons un grand nombre de 
billes. Nous déterminons Ln(W) et l’approximons en utilisant la formule de Stirling pour 
A très grand. 

Nous voulons maximiser Ln(W), donc il faut calculer les variations de Ln(W) lorsque les ni

varient. 

Statistiques des particules p.6



Statistique de Boltzmann (4)

Multiplicateurs de Lagrange:
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Const.

Nous introduisons les multiplicateurs de Lagrange pour introduire les deux conditions N= 
const et U= const. 

L’équation résultante doit être valide pour touts les ni les termes entre parenthèse 
doivent donc être tous nuls. 

N étant la somme de tous les ni, il est possible d'éliminer la constante . 
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Statistique de Boltzmann (5)

0

0 0

0 0

1
i

i

i i

p
E

i ip p
Ei i

i i i p p
E Ei i

i i
i i

E g e
g N

U E n E e N
g e g e





 







 

  

 

 
          

   
 


 

 

/

/

0

1
i

i

i

E kTi
p E

E kTi kT
i

i

n N
e

g
g e e









 
 
   
  
 


Const.

Théorie des gaz: 3
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Boltzmann

Pour déterminer la constante , il faut analyser l’énergie totale U=const. Elle peut 
s’exprimer en fonction de . 

- Pour un gaz, U=N. 3/2. kT
- Dans ce cas, la dégénérescence correspond à la densité d’état dans un volume 

cubique donc gi est proportionnelle à la racine carrée de Ei. 
- Les intégrales correspondent à des fonctions (5/2) et (3/2).

(voir Abramowitz, «handbook of mathematical functions», p. 255 et 256)
- On peut utiliser la formule: (z+1)=z.(z)

(voir Abramowitz, «handbook of mathematical functions», p. 257)

 =1/kT.

De plus, on peut définir une énergie telle que la constante est exprimée par e/kT. 

Au final on obtient la distribution de Boltzmann. Elle est correcte pour les deux cas 
décrits précédemment. 
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Théorie des gaz
Une seule particule de gaz:

Variation d’impulsion sur une surface 2x xp mv  

Force d’une particule: 
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Exemple: Distribution de Maxwell
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Comme exemple, considérons le cas de molécules distinctes mais identiques dans une 
boite. La dégénérescence correspond à la densité d’états dans cette boite et elle est 
donnée par la racine carrés de l’énergie. La constante A peut être obtenue en calculant 
le nombre total de molécules. 
Cela permet de déterminer la distribution de l’énergie cinétique ½.mv2. On peut 
transformer cette distribution en la distribution de la norme de la vitesse des molécules. 
Cette fonction est connue sous le nom de distribution de Maxwell. 

Statistiques des particules p.10



Statistique de Bose-Einstein (1)
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Toutes les configurations ont la même probabilité, mais elles doivent 
maintenir constants le nombre d’atomes et l’énergie totale.
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Les billes sont indistinctes («noires»)
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X X X
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Dans la statistique de Bose-Einstein les particules sont indistinguables. 
Chaque niveau d’énergie est composé de plusieurs états de même énergie. Il y a gi-1 
séparation entre ces états d’une même énergie. 
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Statistique de Bose-Einstein (2)
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X X X

Considérons un des niveaux d’énergie. 
Il peut se modéliser par ni+(gi-1) places dans lesquelles nous devons répartir ni 

particules. L’occurrence est donc donnée par la «combinaison» de ni particules dans 
ni+gi-1 places. 
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Statistique de Bose-Einstein (3)

Formule de Stirling

 
     

0 00

1 !
( ) ( 1)! ( !) ( 1)!

! 1 !

p p p
i i

i i i i
i ii i i

n g
W Ln W Ln n g Ln n Ln g

n g  

 
       

  

( !) ( )Ln A A Ln A A  

 
0 0

( ) 1 ( 1) ( ) ( 1) ( 1)
p p

i i i i i i i i
i i

Ln W n g Ln n g n Ln n g Ln g
 

            

Const

0 0

( ) ( 1) ( )
p p

i i i i i
i i

Ln W n Ln n g n Ln n
 

         

0

1
( ) 1

p
i

i
i i

g
Ln W Ln n

n

 
    

 


On peut de nouveau utiliser les multiplicateurs de Lagrange pour résoudre ce problème 
et déterminer la distribution la plus probable. 
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Statistique de Bose-Einstein (4)

Multiplicateurs de Lagrange:
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Bose-Einstein

On obtient la statistique de Bose-Einstein.
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Statistique de Fermi-Dirac (1)
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Toutes les configurations ont la même probabilité, mais elles doivent 
maintenir constants le nombre d’atomes et l’énergie totale.
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Les billes sont indistinctes («noires») et principe d’exclusion

Le cas de particules indistinguables mais avec le principe d’exclusion est décrit ici. 
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Statistique de Fermi-Dirac (2)

 0 1
0 0

!
( , ,..., ,..., )

! !

p p
i

i p i
i i i i i

g
W n n n n W

n g n 

 
 

Nombre W de configurations possibles avec N  particules dans les états (n0, n1, … ni, … np)

ni billes       et      ni gi  répartir ni billes dans gi places

 
!

! !
i

i
i i i

g
W

n g n




Etats d’énergie Ei

Configuration totale

.i
i

N n const 

.i i
i

U n E const  

Conditions

Il n’y a qu’une seule particule par état. Pour chaque état, il faut donc répartir ni billes 
dans gi places.
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Statistique de Fermi-Dirac (3)

Formule de Stirling
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De nouveau on applique les multiplicateurs de Lagrange. 
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Statistique de Fermi-Dirac (4)

Multiplicateurs de Lagrange:
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Fermi-Dirac

Et la solution correspond à la statistique de Fermi-Dirac. 

Statistiques des particules p.18



Statistique de Fermi-Dirac avec dégénérescence (2bis)
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Conditions

Gi possibilités dans chaque état

Il n’y a qu’une seule particule par état. Pour chaque état, il faut donc répartir ni billes 
dans gi places.
Mais chaque état offre Gi positions possibles pour la bille qu’il accueille. 
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Statistique de Fermi-Dirac avec dégénérescence (3bis)

Formule de Stirling
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De nouveau on applique les multiplicateurs de Lagrange. 
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Statistique de Fermi-Dirac avec dégénérescence (4bis)

Multiplicateurs de Lagrange:
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Fermi-Dirac avec
dégénérescence

Et la solution correspond à la statistique de Fermi-Dirac avec dégénérescence.

Par exemple dans le silicium, avec les donneurs: G=2 car ils peuvent être occupés par 
deux spins différents, mais avec qu’une seule place ! 

Toujours dans le silicium, pour les accepteurs: G=4 car ils peuvent être occupés par deux 
spins différents sur deux orbitales différentes mais de même énergie. Par contre ils n’ont 
qu’une place à disposition. 
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Voici une comparaison des trois fonctions statistiques. 
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Exemple avec:   N=3, p=1, n0=2, n1=1, g0=3 et g1=1
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Considérons un exemple qui permet de comparer les 3 statistiques: Boltzmann, Bose-
Einstein et Fermi-Dirac. Il n’y a que 2 niveaux d’énergie possibles (p=1), avec 3 particules. 
Le niveau de base contient 3 états de même énergie (g0=3) alors que le niveau excité (E1) 
ne contient lui qu’un seul état (g1=1). Nous considérons le nombre de possibilité 
d’obtenir la distribution (n0,n1)=(2,1).
Boltzmann: il y a 3x9=27 possibilités avec des billes de couleur différentes. Les solutions 
1 à 9 correspondent à la boule verte sur l’état excité et aux possibilités de varier les 
positions des boules rouge et bleue sur les niveaux de base. On remplace ensuite la 
boule verte par la boule rouge puis la boule bleue pour obtenir les solutions 10 à 27. 
Bose-Einstein: Les boules sont indistinctes («grises»). Les solutions 10 à 27 (boules 
rouge ou bleue sur l’état excité) se confondent avec les solutions 1 à 9 (boule verte sur 
l’état excité). De plus, les solutions 7,8 et 9 sont identiques maintenant aux solutions 1,2 
et 3.  il ne reste que 6 possibilités différentes.
Fermi-Dirac: Les boules sont indistinctes, et en plus il ne faut mettre qu’au plus une 
boule par état (principe d’exclusion de Fermi). Les solutions 4, 5 et 6 disparaissent et il 
ne reste que 3 possibilités. 
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